Maths Class 10 Notes for Quadratic Equations

QUADRATIC EQUATIONS

The polynomial of degree two is called quadratic polynomial and equation corresponding to a quadratic polynomial $\mathrm{P}(\mathrm{x})$ is called a quadratic equation in variable x .

Thus, $P(x)=a x^{2}+b x+c=0, a \neq 0, a, b, c \in R$ is known as the standard form of quadratic equation.

There are two types of quadratic equation.
(i) Complete quadratic equation : The equation $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c} 0$ where $\mathrm{a} \neq 0, \mathrm{~b} \neq 0, \mathrm{c} \neq 0$
(ii) Pure quadratic equation : An equation in the form of $\mathrm{ax}^{2}=0, \mathrm{a} \neq 0, \mathrm{~b}=0, \mathrm{c}=0$

ZERO OF A QUADRATIC POLYNOMIAL

The value of x for which the polynomial becomes zero is called zero of a polynomial
For instance,
1 is zero of the polynomial $x^{2}-2 x+1$ because it become zero at $x=1$.

SOLUTION OF A QUADRATIC EQUATION BY

FACTORISATION

A real number x is called a root of the quadratic equation $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$, a 0 if $\mathrm{a} \alpha^{2}+\mathrm{b} \alpha+\mathrm{c}$ $=0$.In this case, we say $x=\alpha$ is a solution of the quadratic equation.

NOTE:

1. The zeroes of the quadratic polynomial $a x^{2}+b x+c$ and the roots of the quadratic equation $a x^{2}+b x+c=0$ are the same.
2. Roots of quadratic equation $a x^{2}+b x+c=0$ can be found by factorizing it into two linear factors and equating each factor to zero.

SOLUTION OF A QUADRATIC EQUATION BY COMPLETING THE SQUARE

By adding and subtracting a suitable constant, we club the x^{2} and x terms in the quadratic equation so that they become complete square, and solve for x .

In fact, we can convert any quadratic equation to the form $(x+a)^{2}-b^{2}=0$ and then we can easily find its roots.

DISCRIMINANT

The expression $b^{2}-4 a c$ is called the discriminant of the quadratic equation.

SOLUTION OF A QUADRATIC EQUATION BY DISCRIMINANT METHOD

Let quadratic equation is $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$
Step 1. Find $D=b^{2}-4 a c$.

Step 2.

(i) If $\mathrm{D}>0$, roots are given by
$x=-b+\sqrt{ } D / 2 a,-b-\sqrt{ } D / 2 a$
(ii) If $\mathrm{D}=0$ equation has equal roots and root is given by $\mathrm{x}=-\mathrm{b} / 2 \mathrm{a}$.
(iii) If $\mathrm{D}<0$, equation has no real roots.

ROOTS OF THE QUADRATIC EQUATION

Let the quadratic equation be $a x^{2}+b x+c=0(a \neq 0)$.
Thus, if $b^{2}-4 a c \geq 0$, then the roots of the quadratic
$-\mathrm{b} \pm \sqrt{ } \mathrm{b}^{2}-4 \mathrm{ac} / 2 \mathrm{a}$ equation are given by

QUADRATIC FORMULA

$-\mathrm{b} \pm \sqrt{ } \mathrm{b}^{2}-4 \mathrm{ac} / 2 \mathrm{a}$ is known as the quadratic formula
which is useful for finding the roots of a quadratic equation.
NATURE OF ROOTS
(i) If $b^{2}-4 a c>0$, then the roots are real and distinct.
(ii) If $b^{2}-4 a c=0$, the roots are real and equal or coincident.
(iii) If $\mathrm{b}^{2}-4 \mathrm{ac}<0$, the roots are not real (imaginary roots)

FORMATION OF QUADRATIC EQUATION WHEN TWO ROOTS ARE GIVEN

If α and β are two roots of equation then the required quadratic equation can be formed as $x^{2}-$ $(\alpha+\beta) x+\alpha \beta=0$

NOTE :

Let α and β be two roots of the quadratic equation $\left(\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0\right.$ then
Sum of Roots: - the coefficient of $x /$ the coefficient t of $x^{2} \Rightarrow \alpha+\beta=-b / a$

Product of Roots :

$\alpha \beta=$ constant term $/$ the coefficient t of $x^{2} \Rightarrow \alpha \beta=c / a$

METHOD OF SOLVING WORD PROBLEMS

Step 1: Translating the word problem into Mathematics form (symbolic form) according to the given condition

Step 2 : Form the word problem into Quadratic equations and solve them.

